Supporting information: Köck, Junker, Lindel "Impact of the ¹ H,15N-HMBC Experiment on the Constitutional Analysis of Alkaloids"

1) 15N-NMR spectroscopy

The 14N isotope, which exists in 99.63% natural abundance, is rarely used in NMR spectroscopy because of the relatively broad lines due to its quadrupole moment. The $15N$ isotope with a spin of $\frac{1}{2}$ has no restrictions due to the line widths of the signals, but the relative sensitivity of ¹⁵N against ¹H is only $3.05 \cdot 10^{-6}$ and only 0.022 in comparison with ¹³C. The application of a 1D ¹⁵N-NMR spectrum is therefore very difficult because of the usually small quantities of natural products.

The following characteristics of the $15N$ isotope are disadvantageous in comparison to 13C for NMR investigations:

a) the natural abundance of the ¹⁵N isotope is 0.37% approximately $1/3$ that of ¹³C,

b) the gyromagnetic ratio of ¹⁵N is about $2/5$ of ¹³C and

c) the relaxation times of $15N$ are longer in comparison to $13C$.

The referencing of the $15N$ chemical shifts is more difficult than for $13C$ because standardly used solvents do not contain ¹⁵N with the exception of DMF. An external standard such as nitromethane (0 ppm) can be used. Because of the insensitivity of the $15N$ nuclei the pulse width calibration on the ¹⁵N channel requires an extra samples which should be ¹⁵N enriched. The signal-to-noise (S/N) ratio of a natural abundance sample at standard concentrations is too low for pulse width calibration.

2) History of the ¹ H,15N-HMBC

The general utility of the HMBC experiment is clearly reflected by the application to several complex molecules shortly after its appearance in the literature.¹ The $\rm ^1H, ^15N$ -HMBC was first applied in 1988 to a DNA-binding protein² and in 1990 to ¹⁵N labeled human thioredoxin³. The first application to an alkaloid was also described in 1990.⁴ In 1995, a comprehensive review article on the ${}^{1}H,{}^{15}N$ -HMBC experiment was published.⁵ Despite the potential in structure elucidation of alkaloids and its established experimental setup, the 15Nbased experiment is not as widely used as the ${}^{1}H,{}^{13}C$ -HMBC. This is very astonishing because several of the first applications of the proton-detected multiple quantum coherence experiments (HMQC) were applied to $15N⁶$ In contrast to oxygen-rich compounds, alkaloids have the advantage that the ¹⁵N isotope is accessible to 2D correlation experiments. NMR experiments sensitive to 17O can usually not be applied to natural products. The recent developments of the HMBC experiment⁷ are not discussed here.

3) Practical Aspects of the ¹ H,15N-HMBC

For the ¹H,¹⁵N-HMBC experiment (proton excitation and detection) only the natural abundance of $15N$ is of relevance for the sensitivity. Therefore, the $1H$, $15N$ -HMBC experiment is 3 times less sensitive than the ${}^{1}H,{}^{13}C$ -HMBC experiment leading to a theoretical increase of the measuring time by a factor of 9 (in practice the measuring time of a ${}^{1}H,{}^{15}N$ -HMBC is about 6 times longer). The increased measuring time is not a problem for a natural product sample of about 20 mg because a ${}^{1}H,{}^{13}C$ -HMBC takes about 30 to 60 minutes. Usually the relaxation delay is set approximately 500 ms longer as for the ${}^{1}H,{}^{13}C$ -HMBC (relaxation delay and acquisition time 2.5 to 3.0 s). The introduction of pulsed field gradients⁸ was especially valueable for the broad application of the $HMBC$ experiment⁹ (even more important for the $15N$ version) since before the use of pulsed field gradients only phase cycling was available for the suppression of protons bound to ¹²C or ¹⁴N. Because of this, HMBC spectra usually had very strong t_1 noise which made the analysis without a t_1 noise reduction (e. g., skyline projection) almost impossible.

References

- (1) For example, see: (a) Summers, M. F.; Marzilli, L. G.; Bax, A. *J. Am. Chem. Soc.* **1986**, *108*, 4285- 4294. (b) Bax, A.; Aszalos, A.; Dinya, Z.; Sudo, K. *J. Am. Chem. Soc.* **1986**, *108*, 8056-8063. (c) Pagano, T. G.; Yohannes, P. G.; Hay, B. P.; Scott, J. R.; Finke, R. G.; Marzilli, L. G. *J. Am. Chem. Soc.* **1989**, *111,* 1484-1491. (d) Akkerman, M. A. J.; Neijman, E. W. J. F.; Wijmenga, S.; Hilbers, C. W.; Bermel, W. *J. Am. Chem. Soc.* **1990**, *112*, 7462-7474.
- (2) Clore, G. M.; Bax, A.; Wingfield, P.; Gronenborn, A. M. *FEBS Lett.* **1988**, *238*, 17-21.
- (3) Forman-Kay, J. D.; Gronenborn, A. M.; Kay, L. E.; Wingfield, P. T.; Clore, G. M. *Biochemistry* **1990**, *29*, 1566-1572.
- (4) Carmeli, S.; Moore, R. E.; Patterson, G.; Corbett, T. H.; Valeriote, F. A. *J. Am. Chem. Soc.* **1990**, *112*, 8195-8197.
- (5) Koshino, H.; Uzawa, J. *Kagaku Seibutsu* **1995**, *33*, 252-258.
- (6) Publications between 1983 and 1986: (a) Bax, A.; Griffey, R. H.; Hawkins, B. L. *J. Am. Chem. Soc.* **1983**, *105*, 7188-7190. (b) Bax, A.; Griffey, R. H.; Hawkins, B. L. *J. Magn. Reson.* **1983**, *55*, 301-315. (c) Griffey, R. H.; Poulter, C. D.; Bax, A.; Hawkins, B. L.; Yamaizumi, Z.; Nishimura, S. *Proc. Natl. Acad. Sci. U. S. A.* **1983**, *80*, 5895-5897. (d) Live, D. H.; Davis, D. G.; Agosta, W. C.; Cowburn, D. *J. Am. Chem. Soc.* **1984**, *106*, 6104-6105. (e) Roy, S.; Papastavros, M. Z.; Sanchez, V.; Redfield, A. G. *Biochemistry* **1984**, *23*, 4395-4400. (f) LeMaster, D. M.; Richards, F. M. *Biochemistry* **1985**, *24*, 7263-7268. (g) Sarkar, S. K.; Glickson, J. D.; Bax, A. *J. Am. Chem. Soc.* **1986**, *108*, 6814-6816.
- (7) For example, see: (a) Furihata, K.; Seto, H. *Tetrahedron Lett.* **1996**, *37*, 8901-8902. (b) Furihata, K.; Seto, H. *Tetrahedron Lett.* **1998**, *39*, 7337-7340. (c) Wagner, R.; Berger, S. *Magn. Reson. Chem.* **1998**, *36*, S44-S46. (d) Martin, G. E.; Hadden, C. E.; Crouch, R. C.; Krishnamurthy, V. V. *Magn. Reson. Chem.* **1999**, *37*, 517-528.
- (8) (a) Maudsley, A. A.; Wokaun, A.; Ernst, R. R. *Chem. Phys. Lett.* **1978**, *55*, 9-14. (b) Bax, A.; De Jong, P. G.; Mehlkopf, A. F.; Smidt, J. *Chem. Phys. Lett.* **1980**, *69*, 567-570. (c) Hurd, R. E. *J. Magn. Reson.* **1990**, *87*, 422-428.
- (9) (a) Hurd, R. E.; John, B. K. *J. Magn. Reson.* **1991**, *91*, 648-653. (b) Willker, W.; Leibfritz, D.; Kerssebaum, R.; Bermel, W. *Magn. Reson. Chem.* **1993**, *31*, 287-292.